This AI kit is launched by Waveshare to provide a more cost-effective and high-performance AI solution for the Raspberry Pi 5, optional for PCIe To M.2 adapter, suitable for applications such as process control, safety, home automation and robotics, etc.
Features At A Glance
- Hailo-8 AI M.2 module
- Powered by 26 Tera-Operations Per Second (TOPS) Hailo-8 AI Processor
- 2.5W typical power consumption
- Scalable, enabling simultaneous processing of multi-streams & multi-models
- Enabling real-time, low latency and high-efficiency AI inferencing on the edge devices
- Supports TensorFlow, TensorFlow Lite, ONNX, Keras, Pytorch frameworks
- Supports Linux and Windows
- Supports the temperature range of -40°C to 85°C
- PCIe To M.2 adapter
- Onboard power monitoring chip and EEPROM, supports real-time monitoring of device power status for more stable operation
- Raspberry Pi HAT+ compliant
- Reserved airflow vent, supports installing cooling fan for better heat dissipation of the AI module to improve performance
- Immersion gold process design, anti-oxidation and more durable
Hailo-8 AI M.2 Module Parameters
AI performance | 26 TOPS |
---|---|
Form Factor | M.2 Key M |
Power supply | 3.3V ± 5% |
Power consumption | 2.5W (Typ.) 8.65W (Max.) |
Interface | PCIe Gen3, 4-lane |
Certificate | CE, FCC Class A |
Storage temperature | -40 ~ 85°C |
Operating temperature | -40 ~ 85°C |
Operating humidity | 5% ~ 90%RH (no frosting) |
Dimensions | 22×80mm with breakable extensions to 22×42mm and 22×60mm |
The Hailo-8 M.2 module is an AI accelerator module for AI applications, based on the 26 tera-operations per second (TOPS) Hailo-8 AI processor with high power efficiency. The M.2 AI accelerator features a full PCIe Gen-3.0 4-lane interface, delivering unprecedented AI performance for edge devices.
The M.2 module can be plugged into an existing edge device with M.2 socket to provide low-power deep neural network inferencing. Leveraging Hailo's comprehensive Dataflow Compiler and its support for standard AI frameworks, customers can easily port their Neural Network models to the Hailo-8 and introduce high-performance AI products to the market quickly.